Design and Analysis of Fuzzy-Neural Discrete Adaptive Iterative Learning Control for Nonlinear Plants
نویسندگان
چکیده
In this paper, a fuzzy neural network (FNN) based discrete adaptive iterative learning controller (AILC) is proposed for a class of discrete-time uncertain nonlinear plants which can repeat a given task over a finite time sequence. Compared with the existing discrete AILC schemes, the proposed strategy can be applied to the discrete-time uncertain nonlinear plants with not only initial resetting errors and iteration-varying desired trajectory, but also random bounded disturbances and unknown non-Lipschitz plant nonlinearities. Two FNNs are used as approximators to compensate for the unknown plant nonlinearities. To overcome the function approximation error and possibly large random bounded disturbance, a time-varying boundary layer is introduced to design an auxiliary error function. The auxiliary error function is then utilized to derive the adaptive laws since the optimal FNN parameters for a good function approximation and the optimal width of time-varying boundary layer are unavailable. By using a Lyapunov like analysis, we show that the closed-loop is stable in the sense that the adjustable parameters and internal signals are bounded for all the iterations. Furthermore, learning performance is guaranteed in the sense that the norm of output tracking error vector will asymptotically converge to a residual set which is bounded by the width of boundary layer.
منابع مشابه
ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملRepetitive Tracking Control of Nonlinear Systems Using Reinforcement Fuzzy-Neural Adaptive Iterative Learning Controller
This paper proposes a new fuzzy neural network based reinforcement adaptive iterative learning controller for a class of nonlinear systems. Different from some existing reinforcement learning schemes, the reinforcement adaptive iterative learning controller has the advantages of rigorous proofs without using an approximation of the plant Jacobian. The critic is appended into the reinforcement a...
متن کاملOutput Based Adaptive Iterative Learning Control Design for Nonaffine Nonlinear Systems
In this paper, an output based adaptive iterative learning controller using an output recurrent fuzzy neural network is proposed for a class of uncertain nonaffine nonlinear systems. It is assumed that the states are not measurable. Without state observer, a sliding window of measurement is introduced to design the iterative learning controller. The main structure of this controller is construc...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کامل